

Translating cancer biology into medicines

Cyclacel Pharmaceuticals, Inc. (CYCC) APRIL 2024

Disclaimer

This presentation contains certain forward-looking statements that involve risks and uncertainties that could cause actual results to be materially different from historical results or from any future results expressed or implied by such forwardlooking statements. Such forward-looking statements include statements regarding, among other things, the efficacy, safety and intended utilization of Cyclacel's product candidates, the conduct and results of future clinical trials, plans regarding regulatory filings, future research and clinical trials and plans regarding partnering activities. Factors that may cause actual results to differ materially include the risk that product candidates that appeared promising in early research and clinical trials do not demonstrate safety and/or efficacy in larger-scale or later clinical trials, trials may have difficulty enrolling patients, Cyclacel may not obtain approval to market its product candidates, the risks associated with reliance on outside financing to meet capital requirements, and the risks associated with reliance on collaborative partners for further clinical trials, development and commercialization of product candidates. You are urged to consider statements that include the words "may," "will," "would," "could," "should," "believes," "estimates," "projects," "potential," "expects," "plans," "anticipates," "intends," "continues," "forecast," "designed," "goal," or the negative of those words or other comparable words to be uncertain and forward-looking. For a further list and description of the risks and uncertainties the Company faces, please refer to our most recent Annual Report on Form 10-K and other periodic and other filings we file with the Securities and Exchange Commission and are available at <u>www.sec.gov</u>. Such forward-looking statements are current only as of the date they are made, and we assume no obligation to update any forward-looking statements, whether as a result of new information, future events or otherwise.

Discovered and developing fadraciclib & plogosertib cell cycle, drug portfolio

Fadra potentially best-in-class, next generation CDK inhibitor

Unique Ph 2 precision medicine strategy: patients with <u>CDKN2A/CDKN2B mutations</u>

Single-agent anticancer activity (CR, PR, SD) with good tolerability including:

 GYN (incl. breast/endometrial/ovarian), hepatobiliary, NSCLC, pancreatic, testicular and lymphoma

Enroll two Phase 2 cohorts with readouts in Q4 '24 – Q1 '25; potentially supporting registration pathways

Fadra Patient Groups

- Two dose escalation studies:
 - 065-01 IV (n=52)
 - 20/52 had sequencing data
 - 6/20 had CDKN2A and/or CDKN2B alterations
 - 065-101 oral (n=47)
 - 21/47 had sequencing data
 - 5/21 had CDKN2A and/or CDKN2B alterations

Responder Profiles: CDKN2A/B Alterations (retrospective review)

Patient <i>Study</i>	Histology	Best Response (sum of target lesions)	Dose Level	Schedule	Mutation
38 iv <i>065-01</i>	Endometrial	CR (-100%)	213mg QD	2d/wk 2/3 wks	CDKN2A, CDKN2B, MTAP loss, MCL1 amp
14 iv <i>065-01</i>	Ovarian	SD (-2.5%)	192mg/m ²	1d/3 wks	CDKN2A, CCNE1, MYC gain
11 iv <i>065-01</i>	Salivary gland	SD (0.8%)	128mg/m ²	1d/3 wks	CDKN2A mutation & gain CDKN2B gain
51 oral <i>065-101</i>	NSCLC squamous	SD (-22%)	125mg BID	5d/wk 4/4 wks	CDKN2B loss
16 oral <i>065-101</i>	Cholangio- carcinoma	SD (-5%)	75mg BID	5d/wk 4/4 wks	CDKN2A mutation
55 oral <i>065-101</i>	Pancreatic	SD (4%)	125mg BID	5d/wk 4/4 wks	CDKN2A loss
62 oral <i>065-101</i>	Sertoli germ cell testicular	SD (-12%)	150mg QD	7d/wk 4/4 wks	CDKN2A, CDKN2B, MTAP loss

Data on file. Pt 62 unmonitored data. Mutational status with CDKN2A/B alterations: in oral study: 5/21, in IV study: 6/20 patients. Pt 20 i.v. pancreaticobiliary; 192 mg/m2; 1 C only) CDKN2A loss.

Fadra – Novel and Potent CDK2 and CDK9 inhibitor

EOL-1 (KTM2A-PTD, CDKN2A/B Loss) AML xenograft

Depletion of MCL1 level and Rb phosphorylation (pRB) *in vivo* following fadraciclib treatment of lung cancer PDX models

CYCLACEL Frame, PLoS One 2020, 15:e0234103; Kawakami, Mol Cancer Ther 2021, 20:477

CDKN2A/B and Fadra MoA

CDKN2A encodes p16^{INK4a}, CDKN2B p15^{INK4b} which inhibit D-type cyclin complexes w/ CDK4 & CDK6

- Dysregulated CDK4/6 drive cancer progression and proliferation in G1, suggesting a role for CDK4/6 inhibition
- Abemaciclib (CDK4/6i) activity in CDKN2A mutant cells is limited by CDK2 bypass of CDK4/6 inhibition ¹

CDKN2A also encodes p14^{ARF}, which disrupts MDM2-directed degradation of p53; suppression of MDM2 expression by CDK9i may compensate for loss of this activity

No approved drugs for patients harboring CDKN2A/ CDKN2B

CDKN2A Alterations

Solid tumors >10%: GBM, H&N, pancreas, esophagus, lung, bladder, HCC/BTC, breast, melanoma, sarcoma

Lymphoma: CDKN2A deletions in 46% of PTCL-NOS patients.

CDKN2B Alterations

>10%: glioma, lung, bladder, H&N, pancreas, melanoma, esophagus, sarcoma, HCC/BTC, breast, ovarian

Fadra Oral 065-101 Ph 1/2 Solid Tumors & Lymphoma (ongoing, unselected, late line)

Enrolled n=47 as of March 26, 2024. No DLT in cohorts 1-5 (n=22). DL5=RP2D. PoC part to start next.

Oral Fadra Safety Summary

- All dose levels
 - Mostly grade 1 and 2 and reversible
 - Gastrointestinal disorders, including nausea, vomiting, diarrhea, and constipation
 - General, including fatigue
 - Metabolism, including hyperglycemia
 - Hematological, including platelet decrease
- Dose limiting toxicities (DLT) observed at 125mg BID and higher
 - Grade 3 nausea and hyperglycemia; both manageable and reversible
- Dose levels 1-5 were well tolerated with no DLTs reported

Oral Fadra 065-101 Response (all comer, n=32, as of 31JAN24)

*Tumor assessments done at 4 weeks post-treatment and every 8 weeks thereafter.

CYCLACEL

PR in angioimmunoblastic PTCL pt. (oral 065-101, 1st cycle DL5)

 Data on file. PET scan images kindly provided by the principal investigator. CDKN2A deletions in 46% of PTCL-NOS patients, Maura F et al Haematologica. 2021 Nov 1 106 11 2918.

CDKN2A deletion in T Cell Lymphoma

ARTICLE

Incidence of CDKN2A deletions was 46%.¹

Haematologica 2021 Volume 106(11):2918-2926 Non-Hodgkin Lymphoma

CDKN2A deletion is a frequent event associated with poor outcome in patients with peripheral T-cell lymphoma not otherwise specified (PTCL-NOS)

Francesco Maura,¹⁻⁴ Anna Dodero,⁵ Cristiana Carniti,⁵ Niccolò Bolli,^{2.5} Martina Magni,⁵ Valentina Monti,⁶ Antonello Cabras,⁶ Daniel Leongamornlert,³ Federico Abascal,³ Benjamin Diamond,¹ Bernardo Rodriguez-Martin,⁷ Jorge Zamora,⁷ Adam Butler,³ Inigo Martincorena,³ Jose M. C. Tubio,⁷ Peter J. Campbell,³ Annalisa Chiappella,^{8*} Giancarlo Pruneri^{2.6} and Paolo Corradini^{2.5}

¹Myeloma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ²Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy; ³The Cancer, Aging and Somatic Mutation Program, Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; ⁴Weill Cornell Medical College, New York, NY, USA; ⁵Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ⁶Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ⁷CIMUS - Molecular Medicine and Chronic Diseases Research Center, University of Santiago de Compostela, Santiago de Compostela, Spain and ⁸Department of Hematology Azienda Ospedaliera Città della Salute e della Scienza, Turin, Italy.

Squamous NSCLC patient (oral 065-101, 1 cycle DL6a)

Baseline scan 7-SEP-23 50y old, NOV22-APR23 carboplatin+paclitaxel; MAY23 atezolizumab+docetaxel, progressed Cycle 1 scan 9-OCT-23 SD sum of all target lesions **-22**%. D1C1 14-SEP-23 **NGS: CDKN2B loss**

Fadra Oral 065-101 Swimmers Plot (dose escalation part)

PR then CR 065-01 Part 2 IV Endometrial Pt (CDKN2A, CDKN2B and MTAP loss)

CYCLACEL^{*} Do, KT, et al., 32nd EORTC/AACR/NCI Virtual Symposium 24-25 Oct. 2020. CR=complete response.

Endometrial Patient History 065-01 Part 2 IV

Dose Proportional PK with CDK2 and 9 Coverage at Higher Dose Levels

Fadra Suppresses E2F (CDK2 dependent) DL5 Phase 1 Patients

Data on file. Blue=suppression, Red=overexpression.

 $\ensuremath{\mathbb{C}}$ 2024 Cyclacel Pharmaceuticals, Inc. Rel. APR2024

Fadra Suppresses CDKN2A/B Transcription in Patients

DL2: 50 mg bid

CDKN2A	101_010_D01_H01	101_010_D01_H04	101_010_D01_H08	101_010_D17_H01	101_010_D17_H04	101_010_D17_H08	101_010_D17_H24	101_012_D01_H01	101_012_D01_H04	101_012_D01_H08	101_012_D01_H24	101_012_D17_H01	101_012_D17_H04	101_012_D17_H08	101_012_D17_H24	101_013_D01_H01	101_013_D01_H04	101_013_D01_H08	101_013_D01_H24	101_013_D17_H01	101_013_D17_H04	101_013_D17_H08	101_013_D17_H24
CDKN2B																							

DL5: 100 mg bid

	P017_D01_H01	P017_D01_H04	P017_D01_H08	P017_D01_H24	P019_D01_H01	P019_D01_H04	P019_D01_H08	P019_D01_H24	P020_D01_H01	P020_D01_H04	P020_D01_H08	P020_D01_H24	P020_D17_H01	P020_D17_H04	P020_D17_H08	P020_D17_H24	P021_D01_H01	P021_D01_H08	P021_D01_H24	P023_D01_H01	P023_D01_H04	P023_D01_H08	P023_D01_H24	P023_D17_H01	P023_D17_H04	P023_D17_H08	P023_D17_H24	P024_D01_H01	P024_D01_H04	P024_D01_H08	P024_D01_H24	P026_D01_H01	P026_D01_H04	P026_D01_H08	P026_D01_H24	P026_D17_H01	P026_D17_H04	P026_D17_H08	P026_D17_H24	P027_D01_H01	P027_D01_H04	P027 D01 H24	P027 D17 H01	– – – P027 D17 H04	 РО27 D17 H08	P027 D17 H24	P034 D01 H01	P034 D01 H04	P034 D01 H08	P034_D01_H24	P034 D17 H01	— — — РОЗ4 D17 H04	P034 D17_H08	P034 D17 H24
CDKN2A CDKN2B																																																						

DL6b: 150 mg qd	101_039_D01_H01	101_039_D01_H04	101_039_D01_H08	101_039_D01_H24	101_040_D01_H01	101_040_D01_H04	101_040_D01_H24	101_047_D01_H01	101_047_D01_H04	101_047_D01_H08	101_047_D01_H24	101_047_D17_H01	101_047_D17_H04	101_047_D17_H08	101_047_D17_H24	101_053_D01_H01	101_053_D01_H04	101_053_D01_H08	101_053_D01_H24	101_053_D17_H01	101_053_D17_H04	101_053_D17_H08	101_053_D1/_H24	102_041_D01_H04	102_041_D01_H08	102_041_D01_H24	102_050_D01_H01	102_050_D01_H04	102_050_D01_H08	102_050_D01_H24	302_057_D01_H01	302_057_D01_H04	302_057_D01_H08	302_057_D01_H24	log	2 (HxH +3 0 -3	10)
CDKN2A CDKN2B																																					

Single agent responses and broad activity in liquid and solid cancers

CDK2 + CDK9 inhibition may be superior to either CDK2 or CDK9

- Cancer cells adapt to CDK2i; CDK2i work better if CDK9i silences MYC
- Exploiting CDKN2A/B vulnerability for precision medicine strategy
- Fadra unusual next gen CDKi; has threaded the needle of transient suppression of anti-apoptosis proteins without broad hematological toxicity

Arora M et al, Cancer Res 2023 83 (7_Suppl): 5992. Knudsen E et al Cell Rep 2022 Mar 1 38 9. Poon E et al, JCI 2020.

Plogosertib (CYC140) Next Gen PLK1 inhibitor

Novel mechanism with a unique **mutational** strategy **Targeting ARID1A and TP53 Mutated Cancers**

© 2024 Cyclacel Pharmaceuticals, Inc. Released MAR2024 23

Plogo Preclinical Activity

-20 👌

CYC140 increases mitotic cell number and induces monopolar spindle formation

© 2024 Cyclacel Pharmaceuticals, Inc. Released MAR2024

Plogo 140-101 Oral Ph1/2 Ongoing in Solid Tumors & Lymphoma

Dose Escalation* (3+3; all comer, late line; DL=dose level)

Schedule: 3 out of 4 wk per cycle.

Proof of Concept (PoC)** (Simon 2-stage; 2nd /3rd line)

Cohort 1: Bladder cancer

Cohort 2: Breast cancer (TNBC)

Cohort 3: Lung cancer (NSCLC and SCLC)

Cohort 4: Hepatocellular carcinoma (HCC) and biliary tract cancer

Cohort 5: Metastatic colorectal cancer (mCRC) including KRAS-mutated

Cohort 6: B-cell lymphoma including diffuse large B-cell lymphoma (DLBCL)

Cohort 7: T-cell lymphoma (CTCL/PTCL)

Cohort 8 Basket: tumors suspected to have related MoA (expand if responses)

Pivotal (if randomized study not needed)

Single-arm, open label, study for n=TBD cancer patients

Indication in pivotal study to be determined based on clinical data from PoC

Oral Plogo Well Tolerated up to Dose Level 5

- Drug-related adverse events reported, mostly grade 1 and 2 and reversible
 - General including fatigue
 - Hematological: anemia
 - Investigations: mild transaminase increase
- No dose limiting toxicities observed to date

Plogo Oral 140-101 DL1-4 Swimmers Plot (dose escalation ongoing)

DL1 = Dose Level 1: 50mg, BID MWF, Week 1-3 (300 mg/week) DL2 = Dose Level 2: 50mg, BID M-F, Week 1-3 (500 mg/week) DL3 = Dose Level 3: 75mg, BID M-F, Week 1-3 (750 mg/week) DL4 = Dose Level 4: 100mg, BID M-F, Week 1-3 (1000 mg/week) DL5 = Dose Level 5: 100mg, BID M-F, Week 1-4 (1000 mg/week)

ACC = Adenoid Cystic Carcinoma (Salivary glands) AOV = Ampulla of Vater CRC = Colon and Rectum IHCC = Intrahepatic cholangiocarcinoma NC = NUT carcinoma (Paranasal sinuses) Data cutoff date: 2023-10-02

Mean (±SD) Plasma Plogo Concentration-Time Plot C1D1 & C1D18

Day 1

Day 18

Based on preclinical modeling data, efficacious doses yet to be achieved.

CYCLACEL^{*} Data on file.

ARID1A Modifications

1L AML Standard of Care: venetoclax + azacitidine

TP53 mutated patients do not benefit from ven + aza; poor OS

Ethical to test as 1L treatment in a single arm study

Large unmet medical need

Excellent opportunity for disease modifying treatment

Preclinical Plogo (aka CYC140) + Aza Activity in AML

Data on file.

© 2024 Cyclacel Pharmaceuticals, Inc. Rel. APR2024

Plogo Potentially "Only-in-Class" Mutational Strategy

Plogo enables chromatin accessibility at low concentrations

Potential activity across mechanistically relevant tumors

- Specific mutations in SWI/SNF complex subunit proteins, incl. ARID1A, SMARCA, etc.
- Novel targets in molecular pathways with unmet medical need
- Could lead to patient selected, biomarker driven Ph1 expansion group

Preclinical sensitivity data from world-class laboratories in CRC, lymphoma, melanoma, ovarian, SCLC, and AML.

Milestone Momentum

- Fadra Phase 1 final data to include PK, PD, safety and activity data 1H 2024 Ο
- Determine RP2D \checkmark
- Begin Phase 2 solid tumor Proof of Concept 1H 2024 Ο
 - Two cohorts: biomarker-driven CDKN2A/B abnormalities and T-cell lymphoma
- Initial Phase 2 PoC data from disease specific cohorts* 2H 2024 Ο
- Complete tablet manufacture and validation 2H 2024 Ο
- **Plogo** alternative salt formulation clinical supply availability Ο

Thank You

Cyclacel Pharmaceuticals, Inc.

200 Connell Drive #1500 Berkeley Heights, NJ 07922

Contact: <u>ir@cyclacel.com</u> +1 (908) 517 7330